2009; Wisnewski. 2007). Atopy and work-related sensitization were strongly associated in both auto body shop workers (PR 13.8, 95 % CI 1.7–109) and bakery workers (PR 2.62, 95 % CI 1.9–3.6). The correlation between these two variables
necessitated caution when offering both variables to the same model. Models where adjustment for atopy and specific sensitization was desired selleck chemical were first constructed separately and estimates were compared with those from models including both variables. In the end, estimates from the separate models were comparable and both variables were offered into all of the combined models. In general, auto body shop workers tended to report more respiratory symptoms, while bakery workers tended to report more skin symptoms. This could be due, in part, to differences in exposure prevention
activities. Unfortunately, self-reported use of personal protective equipment was only available for auto body shop workers, preventing a comparison of this effect. Observations by the researchers in the field suggest that differences did exist between the two populations, specifically that bakery workers did not use hand or respiratory protection while auto body shop workers tended to use both. A significant exposure–response relationship was observed in the auto body shop workers, the group observed to use PPE, suggesting GANT61 that in these workers PPE use did not reduce exposure to a level that was trivial with respect to health effects. Estimates of airborne exposure were used in the exposure–response models as a crude proxy for skin exposure, so results should be interpreted as airborne exposure-skin mTOR activity symptom associations. Telomerase It is plausible that the airborne exposure estimates provide a good surrogate
of skin exposure. Results from previous studies have shown a relatively strong association between skin and airborne exposures in auto body shop workers (Fent et al. 2008; Liljelind et al. 2010). No reports comparing skin and airborne exposures in bakery workers were located. It is possible that airborne exposure may be a better surrogate for skin exposure in the auto body shops, resulting in less exposure misclassification among auto body shop workers compared to bakery workers. It may also be that average isocyanate exposure (μg-NCO*m−3), or another exposure which was correlated with diisocyanates, was the causal exposure for skin symptoms in auto body shop workers, but that an exposure other than average wheat exposure (μg-wheat*m−3) was responsible for skin symptoms among bakery workers (i.e., wet work, oils, etc.). Despite the observed associations between atopy, specific sensitization, and skin symptoms, the exposure–response relationships remained unchanged in sensitivity analyses.