Asterisks represent outliers The level of colonization of strain

Asterisks represent outliers. The level of colonization of strains carrying the ΔyfeABCD allele was significantly lower than TT01 (P < 0.0001, Mann-Whitney). B) As above except that the lysate from each crushed IJ was plated on LB agar with or without added 0.1% (w/v) pyruvate, as indicated. YfeABCD (also known as SitABCD) is an ABC divalent cation transporter that has been shown to transport both Fe2+ and Mn2+ [18, 23, 24]. In addition, both YfeABCD and Mn2+ have been implicated in resistance to reactive oxygen species (ROS) [22, 25]. Photorhabdus have been reported to be very sensitive to the low levels of ROS (particularly H2O2) generated in LB agar plates

after exposure Selleckchem SB-715992 of the plates to fluorescent light [26]. Therefore the low numbers of CFU obtained with the Δyfe mutant could be explained by poor plating efficiencies due to an increased sensitivity to ROS. To test this we crushed IJs grown on either Pl TT01 or Δyfe and plated the lysate on learn more LB agar

supplemented with 0.1% (w/v) pyruvate (a known scavenger of H2O2). There was no difference in the number of WT Pl TT01 recovered from IJs when the lysate was plated on either LB agar or LB agar supplemented with pyruvate (Figure 6B). On the other hand, the number of CFU recovered from IJs grown on the Δyfe mutant increased to WT levels when the lysate was plated on LB agar supplemented with pyruvate (see Figure 6B). Similar results were obtained when the LB agar plates were supplemented with catalase (28 U ml-1) or if the plates were stored in the dark before use (data not shown). Therefore the Δyfe mutant does colonize the IJ to the same level as Pl TT01 although the Δyfe mutant appears to be more sensitive to ROS than the WT. Interestingly we Monoiodotyrosine did not see any difference in the sensitivity of WT or the Δyfe mutant to ROS when the strains were grown on LB agar and exposed to 30% (v/v) H2O2 (data not shown). Therefore the Δyfe mutant is not inherently more sensitive to oxidative stress and the increased sensitivity to ROS

appears to be dependent on growth within the IJ, suggesting a role for the YfeABCD transporter in this environment. Bioassays using H. downesi https://www.selleckchem.com/products/ABT-888.html reveals symbiosis defect in Pl TT01 DexbD We had previously shown that the exbD gene in Pt K122 was required for the growth and development of H. downesi [11]. In this study we report that H. bacteriophora grows normally on the equivalent mutation in Pl TT01 (Figure 5). Therefore is the H. downesi nematode more sensitive to the exbD mutation or is the Pt K122 exbD::Km mutant less capable of supporting nematode growth and development in general? To test this we set up a set of bioassays whereby Pl TT01 ΔexbD and Pt K122 exbD::Km were incubated separately with their cognate nematode partner or the nematode partner of the other bacterium. For 14 days after inoculation we monitored nematode growth and reproduction and observed that H.

Comments are closed.