aureus (Fig. 5B) and influenza virus (Fig. 5D), that is the only two microbes that promoted IL-2 and IFN-γ responses. In this study, we show that cord pDC promote a Th2 phenotype. However, the Th2-skewing effect of cord pDC could be omitted by enveloped viruses. This implies that virus can divert Th2-biased responses in human cord T
cells. Furthermore, we show that microbes capable of inducing IFN-α promote Th1 responses, whereas a microbe’s ability to induce IL-12 does not correlate to its ability to induce IL-2 or IFN-γ responses in vitro. The numbers of human studies of adaptive T cell responses in newborns compared with adults are limited and conflicting [37]. Yet, it is generally thought that the immune system of newborns is immature and differs from that in adults. The T cell polarization in newborns is correlated with impaired Th1 responses [38, 39]. drug discovery However, individual Th1/Th2 balance in newborns varies depending on parental and environmental
factors [40]. In this paper, we show that the baseline production of the Th2 cytokines IL-5 and IL-13 were elevated in cord CD4+ T cells compared with adult T cells. The Th2 cytokine induction observed in cord cells was not an intrinsic function of the neonatal T cells, but rather a Th2-inducing effect of cord pDC. This is in line with previous click here findings where pDC was shown to promote Th2 responses in healthy and allergic subjects [15, 19]. This is, to our knowledge, the first study to show that the levels of Th2 cytokines obtained in vitro activated T cells differs between newborns and adults. We could not detect any significant differences in Th1 cytokine synthesis (IFN-γ and IL-2) between T cells from adults and newborns, even though others have shown that cord blood DC is impaired in their capacity to induce both IFN-γ and IL-2 in responding T cells
[39]. Instead, our data imply that cord pDC were superior to both cord mDC and adult DC in promoting Th2 responses. The Th2-skewing effect of cord pDC can be blocked by viral stimuli. We found that enveloped viruses (i.e. HSV-1, coronavirus, CMV, morbillivirus 4��8C and influenza virus) blocked IL-13 secretion, while bacteria and non-enveloped viruses did not. This confirms previous findings from us and others, showing that the Th2 skewing effect of pDC in newborns and adults can be omitted by microbial stimuli [3, 19]. However, the diminished IL-13 production that was seen in virus stimulated cultures could not be correlated with Th1 polarization, that is IFN-α, IFN-γ, IL-2 or IL-12 secretion. None of the viruses tested could induce IL-12 secretion, and influenza was the only inactivated virus to evoke IFN-α, IFN-γ and IL-2 production. Still, these findings emphasize the importance of early life microbial stimuli of the innate immune system for an accurate maturation of the immune system, that is to avoid unwanted Th2 responses.