Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional phosphatase inhibitor imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in
comparison to a healthy population, which disappeared after successful rTMS. Selleckchem CX-6258 Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking
functional imaging changes to craving intensity suggests this approach warrants further exploration. Crown Copyright (C) 2011 Published by Elsevier Ireland Ltd. All rights reserved.”
“Type I interferons (IFN-alpha/beta) control viral infection by triggering the expression of genes that restrict transcription, translation, replication, and assembly. Many viruses induce IFN responses NU7026 research buy after recognition by cytoplasmic or endosomal RNA sensors (RIG-I-like RNA helicases [RLR] and Toll-like receptors [TLR]), which signal through the cognate adaptor signaling molecules IPS-1, TRIF, and MyD88. Recent studies have demonstrated
that IPS-1-dependent induction of IFN-alpha/beta downstream of RLR recognition restricts West Nile virus (WNV) infection in many cell types, whereas TRIF-dependent TLR3 signaling limits WNV replication in neurons. Here, we examined the contribution of MyD88 signaling to the control of WNV by evaluating IFN induction and virus replication in genetically deficient cells and mice. MyD88(-/-) mice showed increased lethality after WNV infection and elevated viral burden primarily in the brain, even though little effect on the systemic type I IFN response was observed. Intracranial inoculation studies corroborated these findings, as WNV spread more rapidly in the central nervous system of MyD88(-/-) mice, and this phenotype preceded the recruitment of inflammatory leukocytes. In vitro, increased WNV replication was observed in MyD88(-/-) macrophages and subsets of neurons but not in myeloid dendritic cells.