Discussion

Campylobacter species could readily be detecte

Discussion

Campylobacter species could readily be detected in feces from both the healthy and diarrheic dogs (Figure 1). From a public health perspective, several findings are of note. C. upsaliensis, which was the predominant species detected in this study, has been reported, second only to C. jejuni, as the most frequently isolated cause of campylobacteriosis in some US settings [5]. As well, many of the Campylobacter species examined, including known or emerging human pathogens, were detectable in both the healthy and diarrheic dog populations, with most species found at significantly higher levels in the diarrheic population (Table 1). This becomes increasingly relevant when the level of organisms detected selleck screening library is considered. Figure 1 highlights that in both dog populations, Campylobacter levels reaching 108 organisms/g of feces could be detected. With reports that the human infectious dose for campylobacteriosis by C. jejuni can be as low as 8 × 102 organisms ingested [23], the possibility of accidental exposure to infectious levels of Campylobacter from pet dogs in a household www.selleckchem.com/products/ABT-888.html is within the realm of possibility. Taken together, our results support the findings of previous groups indicating pet dogs as a risk factor for campylobacteriosis [8–10]. From a Campylobacter ecology perspective, an important finding from this data is the species

richness of Campylobacter detected, particularly in the diarrheic samples. The diarrheic dog samples examined in this study came from clinical submissions where the major clinical sign was persistent diarrhea. In the veterinary context, samples from acute cases (often caused by dietary indiscretion; i.e. eating garbage) would be

submitted rarely since the diarrhea episode would resolve Orotic acid in a short time. The etiology of the diarrhea was not considered in our sample selection, although in many cases, intestinal bacterial overgrowth associated with increased numbers of Clostridium perfringens was suspected. This suggests that the apparent enrichment of Campylobacter populations may be related to environmental changes consistent with the physiological condition of diarrhea (which may include increased stool volume and weight, increased defecation frequency and loose stools), rather than any particular pathogen or disorder. This is consistent with reports of an increase in C. coli numbers in pigs suffering from swine dysentery caused by Brachyspira hyodysenteriae, where the reason for that Campylobacter increase was unclear [24]. It is possible that the healthy dogs had similar species richness, but the majority of species were present at a level below our tests’ detection limits. However, the maximum levels of organisms detected were similar in the healthy and diarrheic samples (~108 organisms/g, Figure 1), suggesting that enrichment of Campylobacter species in the dogs with diarrhea was not uniform and that the maximum abundance of Campylobacter is limited in some way.

Comments are closed.