Finally, we asked if PpiD must be anchored to the inner membrane

Finally, we asked if PpiD must be anchored to the inner membrane to function in vivo. Neither production of soluble N-terminally His6-tagged PpiD (PpiDΔTM) at a level similar to that of PpiDΔParv nor its production from pASKssPpiD at different inducer concentrations restored growth of surA skp cells (Figure 2, and data not shown). pASKssPpiD has also been used to produce and purify soluble His6-PpiD from the periplasmic fraction of E. coli, thus confirming the periplasmic location of the protein. As soluble His6-PpiD is functional in vitro (see below and [24]), these results suggest that the function of PpiD in vivo requires the protein to be anchored in the inner https://www.selleckchem.com/products/BI-2536.html membrane. Overproduction of PpiD lowers

folding stress in the cell envelope of surA skp cells Previous studies suggested that the lethal phenotype of a surA skp mutant is caused by severe protein folding stress in the periplasmic compartment of the cells Torin 1 mouse [10, 25]. To determine whether increased PpiD levels restore viability of surA

skp cells by counteracting folding stress in the cell envelope, we monitored the activities of the σE and Cpx stress pathways over time once growth of P Llac-O1 -surA Δskp cells had leveled off in the absence of IPTG (time interval indicated in Figure 2C). At this time point, SurA was hardly detectable in the cells (Figure 3B), indicating that SurA had efficiently been depleted from the cells. During the course of the depletion of SurA in Δskp cells both the Cpx pathway and, as also reported previously [26], fantofarone the σE-dependent pathway were strongly induced (Figure 3A). The σE and Cpx activities were 4- to 6-fold increased in SurA-depleted Δskp cells (surA skp pASK75) relative to those of SurA-depleted wild-type cells (surA pASK75). This is also reflected in further increased levels of DegP (Figure 3B, lane 4 versus lane 2), whose gene is positively controlled

by the σE and Cpx stress responses [27, 28]. In Δskp cells that overproduced PpiD during the course of SurA depletion, σE and Cpx activities were significantly lower, being only 1.5- to 3-fold induced relative to the respective activities in surA cells. Consistent herewith, the level of DegP was lower in these cells than in surA skp cells that not overproduced PpiD but slightly higher than the DegP level in surA cells (Figure 3B, lane 5 versus lanes 4 and 2, click here respectively). Production of PpiDΔParv during the course of SurA depletion in Δskp cells reduced the σE and Cpx activities slightly less effectively and production of soluble His6-PpiD (PpiDΔTM), which does not rescue surA skp cells from lethality, further induced both stress responses (Figure 3A). Thus, only increased levels of membrane-anchored PpiD proteins dampen the strong response of the σE and the Cpx envelope stress signal transduction pathways to the simultaneous loss of SurA and Skp chaperone activity.

Comments are closed.