The forthcoming evaluation of these tests in the field is keenly Selleck BIBW2992 awaited, since their introduction into clinical practice would represent an important improvement. The molecular diagnosis of HAT,
which has the great advantage of being highly specific, has evident constrains for field application. Only recently, with the development of the LAMP approach, has the translation of DNA amplification into a field test become feasible. One of the most fascinating staging approaches is polysomnography, probably due to its non invasiveness. It is unlikely that this method will become applicable for large-scale stage determination in rural areas, but as suggested by the same authors, it may find a niche application in paediatric cases, for which it would be preferable to avoid a lumbar puncture [119]. Great hopes currently rest on the immune-based detection of biomarkers, such as neopterin. Despite their
lack of specificity, these may prove to be very useful to replace WBC counts for the determination of stage, in combination with the detection of parasites in CSF. Furthermore, they could possibly be used as test-of-cure markers during post-therapeutic follow-up, thus extending their field of application. The translation of this type of molecule into immune-based lateral flow assays is underway, for the rapid determination of disease stage and/or the evaluation of post-treatment outcomes. For some of them, this has already been done for other applications [109]. Thanks to the disease control programmes and resolutions adopted over the last few years, HAT is currently considered selleck chemical under control and complete elimination of the disease is no longer seen as a utopia [3]. However, to reach this goal and to not underestimate the disease, as has already happened in the past [37], patient management needs to be improved, above all in terms of diagnosis and treatment. Effective case detection and therapeutic intervention is essential to reduce disease transmission by decreasing the number of reservoirs. Huge efforts have been made Protein kinase N1 over the last 30 years to improve clinical practice with specific
regard to HAT patients by identifying biomarkers and developing new diagnostic tools. However, some widely used approaches for biomarker discovery in malignant conditions, including proteomics, have not been able to find clear application in sleeping sickness. A few published studies [66], [67] and [117] showed interesting results highlighting the potential utility of proteomics. It and other omics disciplines, by giving a global overview of the transcriptomic, proteomic and/or metabolic state of the samples analyzed, could help to achieve a better understanding of the mechanisms leading to the onset and the progression of sleeping sickness. Additionally, proteomics may also be useful in highlighting differences between the two forms of infecting parasites – T. b. gambiense and T. b. rhodesiense – at both host and parasite levels.