The sHSPs are characterized by a molecular mass of between 12 and

The sHSPs are characterized by a molecular mass of between 12 and 43 kDa and the presence of 80 to 100 residues that constitute the α-crystallin domain, which is flanked by C- and N-terminals that present lower similarity. The N-terminus is critical to α-HSP activity in vivo, playing a role in α-HSP oligomerization and substrate binding [4, 5]. The α-crystallin domain is known to possess a molecular chaperone role [6], and the C-terminal extension maintains α-HSP solubility, stability, and chaperone activity [4]. The sHSPs have been extensively studied due to their importance in protecting cellular proteins and maintaining cellular viability under intensive

stress conditions, which is particularly important for extremophile microorganisms. Interestingly, most extremophiles posses Anlotinib molecular weight A-1210477 mouse one or two sHSPs, and species harboring at least 3 sHSP genes are mostly from the Archea domain. However, three sHSP genes have been identified in the genome of A. ferrooxidans ATCC 23270 [7]. Xiao et al. [8] showed that there could be significant differences in the expression levels of A. ferrooxidans ATCC 23270 sHSP genes in response to heat shock. These findings suggest that A. ferrooxidans sHSP genes may be controlled by different regulatory mechanisms, which could be related to specialized functions of the genes. In this study, the expression levels of three sHSP

genes (Afe_1009, Afe_1437, and Afe_2172) were investigated in the A. ferrooxidans LR strain subjected to heat shock. Phylogenetic analysis and comparative molecular modeling were used to provide new insights concerning the structure and function of the sHSPs from A. ferrooxidans. Methods Bacterial strain and growth conditions The Brazilian strain A. ferrooxidans LR Non-specific serine/threonine protein kinase [9] was grown at 30°C and 250 rpm in modified T&K liquid medium [10] containing 0.4 g/L K2HPO4.3H2O, 0.4 g/L MgSO4.7H2O, 0.4 g/L (NH4)2SO4, and 33.4 g/L FeSO4.7H2O. The pH was adjusted to 1.8 with sulfuric acid. For the

heat shock GSK621 experiments, A. ferrooxidans LR cells were grown in T&K liquid medium until 50% oxidation of Fe2+ was reached. The cells were then collected, inoculated into 100 ml of T&K liquid medium, and incubated at 40°C and 250 rpm for 15, 30 and 60 minutes. RNA isolation The total RNA was isolated from three independent A. ferrooxidans cultures, according to the procedure described by Paulino et al. [11]. The cells were suspended in a solution containing 1 mM EDTA, 100 mM LiCl, and 100 mM Tris-HCl, at pH 7.5. The RNA fraction was extracted with phenol/chloroform/isoamyl alcohol (25:24:1, v/v/v) containing 10% (w/v) SDS, precipitated at -20°C with 2% (w/v) potassium acetate at pH 5.5 and 100% (v/v) ethanol, and resuspended in DEPC-treated water. The RNA was treated with DNase (Invitrogen) for 1 h at 37°C, and stored at -70°C.

Comments are closed.