Data were obtained from at least two independent fermentation experiments. Extraction of FK506 and HPLC analysis were performed as described previously [12]. Briefly, after 6-7 days of cultivation the broth was mixed with the equal volume of methanol (1:1). Samples were filtrated and loaded onto Nucleosil EC100-3 C18, reversed-phase HPLC column. The mobile phase used for isocratic elution was composed of water, acetonitrile, MTBE and phosphoric acid (58.29:34.4:7.29:0.02, v/v/v/v). Chromatographic peaks corresponding to FK506 were identified and quantified using an FK506 external standard (obtained from Lek/Sandoz) and ChromQuest software was used for the data analysis. The calibration curve was
generated using external standard prepared in the mobile phase and linear response was observed in concentration range PI3K Inhibitor Library high throughput from 1 to 1000 mg/L. Samples were see more analyzed immediately after each cultivation and for each experiment external standard was used for quantification. To obtain statistically significant results, each colony was represented by two parallel samples. Yields of FK506 were calculated with SAS/STAT software using means and the univariate procedure to test the normality of distribution. Using the GLM model, data were calculated as least mean square and are presented as an average change observed from all experiments when comparing least mean square values to the wild-type control least mean square value of each
experiment. Results Bioinformatic analysis of the putative regulatory genes Bioinformatic Dinaciclib solubility dmso studies of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 revealed three potential regulatory genes; namely fkbR, fkbN and allN (Figure 1B). Two of the three putative regulatory genes, are located at the right side from the PKS core region, together with three coding sequences (CDSs) involved in biosynthetic reactions (Figure 1B), similarly to gene organization in the related FK506 biosynthetic cluster in Streptomyces sp. KCTC 11604BP [11].
The fkbN gene encodes a putative transcriptional regulator belonging to the LAL family [16, 24] 4��8C and fkbR encodes a putative transcriptional regulator belonging to the LTTR family and seems to represent the right limit of the FK506 gene cluster (Figure 1B). The product of the fkbN gene was originally typized by the regulator of the maltose regulon in Escherichia coli MalT [45]. These regulators are relatively large in size (872-1159 aa) compared to the better-studied SARPs (277-665 aa) [15] and they have been identified in several macrolide antibiotic pathways, including FkbN from Streptomyces hygroscopicus var. ascomyceticus in FK520 biosynthesis [21], PikD from Streptomyces venezuelae for pikromycin [46], RapH from Streptomyces hygroscopicus for rapamycin [20, 24, 47], NysRI/RIII from Streptomyces noursei for nystatin [48] and GdmRI and GdmRII from Streptomyces hygroscopicus 17997 for geldanamycin biosynthesis [49]. DNA sequence of the fkbN gene from S.