We also thank Dr Yunke Dou, Fenghua Niu and Dr Yanhua Yang for th

We also thank Dr Yunke Dou, Fenghua Niu and Dr Yanhua Yang for their assistance in sample collection. “
“Inflammatory

bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity this website are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic check details and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic

and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory

cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. “
“Development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still much needed from clinical and economic points of view. Antiviral substances obtained from medicinal plants are potentially good targets to study. Glycyrrhiza uralensis and G. glabra have been commonly used in both traditional and modern medicine. In this study, extracts of CYTH4 G. uralensis roots and their components were examined for anti-HCV activity using an HCV cell culture system. It was found that a methanol extract of G. uralensis roots and its chloroform fraction possess anti-HCV activity with 50%-inhibitory concentrations (IC50) of 20.0 and 8.0 μg/mL, respectively. Through bioactivity-guided purification and structural analysis, glycycoumarin, glycyrin, glycyrol and liquiritigenin were isolated and identified as anti-HCV compounds, their IC50 being 8.8, 7.2, 4.6 and 16.4 μg/mL, respectively. However, glycyrrhizin, the major constituent of G. uralensis, and its monoammonium salt, showed only marginal anti-HCV activity. It was also found that licochalcone A and glabridin, known to be exclusive constituents of G.

In both study groups, we found low but detectable levels of CD19+

In both study groups, we found low but detectable levels of CD19+ cells in both circulating blood and

spleen learn more at time of termination. This is consistent with earlier reports showing that in LIP the rate of B cell expansion is much lower than that of T cells [36]. Also, the total IgG levels were at a detectable, though low level in both groups, with no significant difference between the groups (Fig. 3A). There was also no significant difference in the serum levels of B cell-activating factor (BAFF), a factor linked to T cell-independent B cell-mediated autoimmunity in Aire−/− mice [27] (data not shown). We then tested the recipients for the presence of autoantibodies against colon, ileum, gastric mucosa, pancreas, kidneys, liver, retina, ovaries and salivary glands. Two kinds of autoantibodies were found in the recipients: autoantibodies targeted to retinal cells in the eye or to smooth muscle cells in the

intestinal walls. In the Aire group, 10 of 10 animals stained positive for either one or both of these autoantibodies. Only four animals of 11 in the control group had autoantibodies targeted Small molecule library ic50 to smooth muscle, and none had autoantibodies targeted to retina. No detectable anti-nuclear antibodies were found in either of the recipient groups. One of the Aire−/− donors stained positive for autoantibodies against both retina and smooth muscle, and all recipients of cells from this donor had similar autoantibodies. Another Aire−/− donor was negative for all autoantibodies tested, but six of six recipients of cells from this donor still became positive for smooth-muscle autoantibodies. None of the control group donors stained positive for autoantibodies (Fig. 3B). These data indicate that LIP of cells from Aire−/− donors both expanded pre-existing autoreactivity Arachidonate 15-lipoxygenase and revealed new autoreactive clones. In LIP, the gut commensal flora is an important source of antigens driving the proliferation, and in adoptive transfer

of T cells to a lymphopenic host, the most common pathology is colitis [37]. Therefore, because the systemic or organ-specific autoimmune manifestations in the recipients were so modest, we next analysed whether the recipients developed colitis. At the time of termination, the recipients in the Aire-group had a significantly higher proportion of T cells in the mononuclear fraction isolated from the mesenteric lymph nodes (Fig. 4A). However, histological analysis of the colon tissue sections showed no difference in the degree of lymphocyte infiltration between the groups. Similarly, although the amount of TCR Cα mRNA was slightly higher in the colon samples from the Aire-group, the difference was not statistically significant (P = 0.098).

415 ± 0 071), whereas il-8 mRNA levels were not modified signific

415 ± 0.071), whereas il-8 mRNA levels were not modified significantly (0.535 ± 0.211) and tnf-α mRNA remained undetectable (Fig. 6A, C, E). EPEC infection did not significantly

alter il-1β mRNA levels (E2348/69: 0.545 ± 0.069 and E22: 0.545 ± 0.115) (Fig. 6A). In the case of il-8, mRNA levels were not altered by E22 infection (0.782 ± 0.098), but E2348/69 infection resulted in decreased il-8 mRNA expression (0.396 ± 0.070) (Fig. 6C). Interestingly, in Wnt inhibitor cells infected with EPEC strains, tnf-α mRNA was abundantly amplified (0.751 ± 0.001 for E2348/69 infection and 0.612 ± 0.216 for E22), in contrast to undetectable levels in mock cells and cells treated with HB101 (Fig. 6E). These results selleck state that IL-1β and IL-8 are constitutively expressed in HT-29 cells, but the synthesis of TNF-α is a consequence of EPEC infection. To analyse the impact of EPEC virulence factors in cytokine expression, we performed RT-PCR assays using RNA extracted from cells infected with EPEC E22 Δeae, ΔescN, ΔespA, or ΔfliC isogenic mutants. Infection with E22 mutants of intimin or EspA genes increased significantly il-1β

mRNA levels (E22Δeae: 0.865 ± 0.093 and E22ΔespA: 0.989 ± 0.074) compared to E22 WT (0.545 ± 0.115). In contrast, il-1β mRNA levels in cells infected with E22ΔescN or E22ΔfliC were not statistically different (0.850 ± 0.185 and 0.626 ± 0.067, respectively) from levels during E22 WT infection (Fig. 6B). Thus, E22 intimin and EspA are factors that maintain the expression of il-1β mRNA at a basal level during EPEC infection. On the other hand, il-8 mRNA expression was not altered in cells infected with any of the mutants (E22Δeae: 0.677 ± 0.211, E22ΔescN: 0.633 ± 0.002, E22ΔespA: 0.727 ± 0.206 or E22ΔfliC: 0.589 ± 0.064) (Fig. 6D) compared to E22 WT infection (0.782 ± 0.098). Interestingly, E22ΔespA infection doubled tnf-α mRNA levels (1.312 ± 0.120) in comparison with E22 WT infection (0.612 ± 0.216). The other E22 mutants activated the production of tnf-α mRNA in infected cells (E22Δeae: 0.595 ± 0.252; E22ΔescN: 0.749 ± 0.276;

tetracosactide E22ΔfliC: 0.577 ± 0.179), at similar levels to those produced by cells infected with E22 WT (Fig. 6F). These results showed the effect of EPEC EspA as a negative modulator of tnf-α expression in infected cells. To quantify the secretion of proinflammatory cytokines, we established ELISA standard curves using pure IL-1β, IL-8 and TNF-α recombinant proteins to calculate the concentration of these molecules in supernatants from cells treated with HB101 or infected with EPEC E2348/69, E22 WT, E22Δeae, E22ΔescN, E22ΔespA or E22ΔfliC for 2 and 4 h (Fig. 7). Supernatants from mock-infected cells did not contain IL-1β (Fig. 7A), and this cytokine is not secreted by non-stimulated cells. In contrast to IL1β mRNA expression (Fig 6), interaction with HB101 did not activate IL-1β secretion.

1c,d) MS increased the levels of IL-1β, TNF-α, IL-8, CCL-20, hBD

1c,d). MS increased the levels of IL-1β, TNF-α, IL-8, CCL-20, hBD-2, hBD-3, TLR-2 and TLR-4 mRNAs

in PDL cells in a force- and time-dependent manner. The expression of hBD-1 mRNA did not change in PDL cells exposed to MS. Maximal immune gene induction was observed in cells subjected to 12% MS for 24 h. Based on these results, we next examined whether the up-regulation of immune and defence gene expression in MS-stimulated cells is mediated by SIRT1. Resveratrol, a well-known SIRT1 activator, up-regulated SIRT1 mRNA and protein levels and enhanced Panobinostat MS-induced expression of the immune genes hBD-2, hBD-3, TLR-2 and TLR-4, but blocked up-regulation of the cytokines and chemokines TNF-α, IL-1β, IL-8 and CCL-20. In contrast, the SIRT1 inhibitor sirtinol attenuated the induction of SIRT1, hBD-2, hBD-3, TLR-2 and TLR-4 expression by MS, but enhanced TNF-α, IL-1β, IL-8 and CCL-20 mRNA expression (Fig. 2a,b). To extend ICG-001 in vitro the investigation of efficacy to other SIRT1 activators and

inhibitors, PDL cells were treated with isonicotinamide and nicotinamide. The SIRT1 inducer isonicotinamide increased MS-induced up-regulation of SIRT1, hBD-2, hBD-3, TLR-2 and TLR-4 expression, but attenuated MS-induced TNF-α, IL-1β, IL-8 and CCL-20 expression (Fig. 3a,b). In contrast, pretreatment of PDL cells with nicotinamide, another inhibitor of SIRT1, reduced the induction of SIRT1, hBDs and TLRs expression by MS and increased the induction of cytokine and chemokine expression by MS. To confirm further the role of SIRT1 in the induction of immune gene expression by MS, we knocked down SIRT1 with a specific siRNA. Transfection of siRNA specific for SIRT1 reduced basal expression of SIRT1 efficiently, as expected, and also reduced SIRT1 expression in the presence of MS (Fig. 4a). Treatment with SIRT1 siRNA abrogated the stimulatory effect of MS on the expression of the immune genes hBD-2, hBD-3, TLR-2 and TLR-4, but increased TNF-α, IL-1β, IL-8 and CCL-20 mRNA levels (Fig. 4b). Because NF-κB activation requires nuclear translocation of

the p65 subunit of NF-κB, we examined the effect of MS on the cytosolic Selleck Docetaxel and nuclear p65 protein pools by Western blotting. As shown in Fig. 5a, p65 translocated from the cytosol to the nucleus as early as 15 min after MS stimulation, a response that was sustained until 90 min post-stimulation. We also investigated I-κBα degradation and phosphorylation to clarify the mechanism of MS-induced NF-κB activation. Consistent with the observed translocation of the NF-κB subunit, MS induced I-κBα degradation and phosphorylation, as determined by Western blotting. Using confocal microscopy, we monitored the spatial distribution of the p65 subunit of NF-κB. In most of the unstimulated PDL cells, NF-κB was located in the cytoplasm (Fig. 5b, left); in MS-stimulated PDL cells, NF-κB was located in the nuclei (Fig. 5b, right).

The only situation in which enough antigen and costimulatory trig

The only situation in which enough antigen and costimulatory triggers are finally made available to the immune system for

successful priming is that offered by the uncontrolled proliferation and expansion of transformed melanocytes in malignant melanoma. Future studies along these lines should provide valuable insights on the shaping of the T-cell repertoire to this well-known tumor antigen and shed light on the dynamics of homeostatic www.selleckchem.com/products/Vorinostat-saha.html and tumor antigen-driven T-cell responses directly in humans. We thank all the members of our research groups, and for support by Ludwig Cancer Research Center, Cancer Vaccine Collaborative, Cancer Research Institute (all NY, USA), Swiss Cancer League (02836-08-2011), and Swiss National Science Foundation (320030-152856, 310030-130812, and CRSII3-141879). The authors declare no financial Selleck MK-2206 or commercial conflict of interest. “
“Chemerin is a novel chemo-attractant and adipokine involved in leukocyte recruitment, inflammation, adipogenesis, lipid/carbohydrate

metabolism, and reproduction. Based on the bioinformatic search for putative small peptides in the conserved region of pre-pro-chemerin, an evolutionary conserved region flanked by potential convertase cleavage sites was identified and we named it as C-20. The binding capacity of C-20 to chemerin receptors and its potential bioactivities were investigated in this study. Radioligand binding assay, receptor internalization assay, and early response gene C-FOS simulation, cAMP assay were carried out in chemokine-like receptor 1 (CMKLR1)/HEK293 transfectants and G protein-coupled receptor 1 (GPR1)/HEK293 transfectants. In vitro transwell chemotaxis assay in CMKLR1/L1.2 transfectants, primary Leydig cell SB-3CT culture, and antral follicle culture

was explored to investigate the bioactivity of C-20. C-20 bound to chemerin receptors CMKLR1 and GPR1 with high affinity triggered CMKLR1 internalization and stimulated subsequent signal C-FOS expression and cAMP production. C-20, such as chemerin, showed CMKLR1-dependent chemotactic property. Furthermore, in primary Leydig cells and antral follicles, C-20 showed similar but less potent suppressive effect on human chorionic gonadotropin-stimulated testosterone production and progesterone production, compared with chemerin. The novel chemerin-derived C-20 peptide binds to chemerin receptors CMKLR1 and GPR1 and showed similar but less potent bioactivity in chemotaxis and the suppression of gonadal steroidogenesis, suggesting that after optimization, C-20 is possible to be a useful experimental tool for the understanding of the biological functions of chemerin/CMKLR1 and chemerin/GPR1 signaling. “
“Citation Veljkovic Vujaklija D, Gulic T, Sucic S, Nagata K, Ogawa K, Laskarin G, Saito S, Haller H, Rukavina D. First trimester pregnancy decidual natural killer cells contain and spontaneously release high quantities of granulysin.

Bone marrow cells were harvested from the femur and tibiae of D01

Bone marrow cells were harvested from the femur and tibiae of D011.10 mice. Subsequently, the erythrocytes were lysed. After washing with 1% FCS supplemented RPMI 1640 medium, T and B cells were depleted using mouse pans T and B dynabeads (Invitrogen). T- and B-depleted cells were incubated at 37°C. After 4 h, nonadherent cells were harvested and cultured at 5 × 106 /mL in 24-well plate in complete medium (RPMI 1640 supplemented with 8% FCS, 2 mM L-glutamin, 5 × 10−5 M β-mercaptoethanol, streptomycin, nonessential amino BAY 57-1293 acids (Gebco) and 1 mM sodium pyruvate (Sigma-Aldrich)) with 1000 IU/mL of

rmGM-CSF (R&D systems), and 1000 IU/mL of rmIL-4 (R&D systems). The medium was refreshed every Pictilisib other day for 1 week. After 1 week culturing, bone marrow-derived DCs were harvested and cultured with DX5+CD4+, DX5−CD4+ T cells or their supernatants or medium for 3 days. LPS (0.01 μg/mL; Sigma-Aldrich) was added after 1 day. The DCs obtained were cultured at 0.4 × 106 /mL with OVA323-339 peptide and OVA-specific CD4+ T cells at 1 × 106 /mL in total volume of 150 μL for 3 days. After 3 days, cytokine production was determined by flow cyto-metry. IL-12

(20 ng/mL) that was added to the co-cultures of CD4+ T cells and DCs were purchased from eBioscience. The concentrations of anti-IL-4 and anti-IL-10 antibodies used for blocking studies were chosen on the Non-specific serine/threonine protein kinase basis of titration experiments where known concentrations of cytokine were effectively inhibited in a bioassay [45]. Cytokine levels in DCs cell culture supernatants were measured by ELISA using IL-12p70 kit ELISA Ready-set-Go (eBioscience) according to the manufacturer’s instructions. Matched pairs of antibodies to measure IL-12p40 were purchased from BD. The expression of the surface molecules was examined

using fluorescence-labeled antibodies against B7-H1 (MIH5) and B7-DC (TY25) from eBioscience and CD80 (16-10A-1), CD86 (GL-1), CD40 (3/23), and MHC class II from BD. CD4+ T cells were visualized by staining with anti-CD4-PerCP-Cy5.5 (L3T4/RM4-5; BD Pharmingen). KJ1-26-PE (Invitrogen) was used to detect OVA-specific T cells. Anti-IFN-γ-FITC (XMG1.2; BD Pharmingen) was used to detect IFN-γ-producing cells. The staining reactions were performed according to manufacturer’s protocol. In brief, the cells were first washed in the staining buffer (PBS containing 0.5% BSA); subsequently, the cells were incubated with antibodies for surface markers for 20 min at 4°C. For intracellular cytokine staining, Brefeldin A (10 μg/mL; Sigma-Aldrich) was added to co-culture of CD4+ T cells and DCs for 4 h. After washing, the cells were fixed using Cytofix/Cytoperm (BD Bioscience) followed by washing with Perm/wash (BD Bioscience). For determination of cytokine production, the cells were stained for intracellular cytokines in Perm/wash for 20 min.

The human cathelicidin LL-37 is expressed in neutrophils, epithel

The human cathelicidin LL-37 is expressed in neutrophils, epithelial cells, mast cells, B cells, NK cells, and γδ T cells (reviewed in 1,

28), while the detailed expression of mCRAMP is less well described. To determine whether splenic B and T cells express mCRAMP, splenocytes from C57BL/6 mice were sort-purified to obtain MZ (B220+, CD21hi, CD23low) B cells, FO (B220+, CD21int, CD23+) B cells, CD4+ and CD8+ T cells. In addition, total peritoneal lavage cells were sort-purified to obtain B1a (CD5+ Mac-1+ B220int), B1b (CD5− Mac-1+ B220int), B2 (CD5− Mac-1− B220high), and T cells (CD5+ B220−). Post-sort analysis selleck screening library revealed greater than 95% purity for each B- and T-cell population (data not shown). Total RNA was isolated from each sort-purified cell population and RT-PCR was performed to detect Camp, CD19, CD3e, and actin mRNA. All B and T cells tested expressed Camp mRNA directly ex vivo (Fig. 1A). To determine whether B and T cells express the mCRAMP protein, total

protein was isolated from purified B and T cells and analyzed using Western blot. Figure 1B confirms the expression of the immature mCRAMP protein in the total resting B and T cells. To determine whether B and T cells regulate the expression of Camp following cell activation, total CD43− splenic B cells were sort-purified and activated with CD40L and IL-4 or IFN-γ, while selleck chemical purified CD4+ T cells were cultured in either Th1- or Th2-inducing conditions. Real-time PCR analysis for the relative expression level of Camp, normalized to actin expression, revealed that both B and T cells increased Camp expression following activation (Fig. 1C). Interestingly, B and T cells express less Camp mRNA and mCRAMP protein 4-Aminobutyrate aminotransferase relative to purified neutrophils (Fig. 1B and C). In addition, total numbers of B- and T-cell subsets as well as serum antibody levels were equivalent between

C57BL/6 and Camp−/− mice (data not shown). These data show that all B and T cells tested express Camp mRNA and mCRAMP protein, suggesting that mCRAMP has the potential to regulate B- and T-cell functions. The ability of mCRAMP to directly regulate mouse T-cell cytokine production has not been fully investigated. WT and Camp−/− naïve CD4+ T cells were sort-purified and cultured in either Th1 (anti-CD3, -CD28, and rIFN-γ) or Th2 (anti-CD3, -CD28, -IL-12, and rIL-4) inducing conditions. Under Th1-inducing conditions, WT and Camp−/− T cells expressed equivalent amounts of IFN-γ mRNA (Fig. 2A), equivalent numbers of IFN-γ+ cells (Fig. 2B), and equivalent IFN-γ mean fluorescent intensity (MFI) (Fig. 2C). In contrast, Camp−/− T cells cultured under Th2-inducing conditions expressed more IL-4 mRNA (Fig. 2D), more IL-4+ cells (Fig. 2E), and equivalent IL-4 MFI (Fig. 2F).

Monocyte-derived DCs were generated from PBMCs as previously desc

Monocyte-derived DCs were generated from PBMCs as previously described with some modifications [51]. Briefly, CD14+ monocytes were enriched by positive selection using CD14 Microbeads (Miltenyi Biotec). Monocytes were cultured in the presence of 20 ng/mL GM-CSF (Immunex, Seattle, WA, USA) and 20 ng/mL IL-4 (R&D systems) in RPMI1640 supplemented with 2.5% fetal calf serum. Medium was replaced by fresh medium containing cytokines 3 days later. On day 6, cells were harvested and used for subsequent experiments. The concentration of IL-12p70 and IL-10 was measured by ELISA Kit (eBioscicence) according to the instruction provided by the manufacturer. Statistical significance was evaluated

by Student’s t-test; p values less than 0.05 are considered significant. This article is dedicated to Sorafenib chemical structure the memory of Lloyd J. Old, M.D. We thank Drs. T. Takahashi and J. B. Wing for critical reading of the manuscript, and L. Wang, C. Brooks, E. Krapavinsky, E. Ritter, and D. Santiago for technical support. This study was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 17016031, H. Shiku, and No. 20015019, H. Nishikawa) and Grants-in-Aid for Scientific Research (B) (No. 23300354, H. Nishikawa), the Cancer Research Institute Investigator

Award (H. Nishikawa) and Cancer Vaccine Collaborative Grant for PLX-4720 Immunological Monitoring (S. Gnjatic, G. Ritter and L.J. Old), Cancer Research Grant from Foundation of Cancer Research Promotion (H. Nishikawa), Takeda Science Foundation (H. Nishikawa), Kato Memorial Bioscience Foundation (H. Nishikawa), the Sagawa Foundation for RVX-208 Promotion

of Cancer Research (H. Nishikawa), and Senri Life Science Foundation (H. Nishikawa). MH is a research fellow of the Japan Society for the Promotion of Science. The authors declare no financial or commercial conflict of interest. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Figure S1. (A) Preparation of NY-ESO-1 and 146HER2 proteins complexed with cholesteryl pullulan (CHP): Recombinant NY-ESO-1 and 146HER2 proteins for clinical use were prepared, and the nano-particles consisting of CHP and the NYESO-1 protein, and CHP and the HER2 complex were formulated. (B) Study design of the clinical trial. (C) Patient characteristics in this study. Figure S2. (A) DCs were prepared from four healthy individuals as described in Materials and Methods. TNF-⟨ (100 ng/ml), LPS (1 mg/ml), or OK-432 (1 ìg/ml) was added in the culture of 1 × 105 immature DCs on day 6. After 48 h, supernatant was collected and cytokine production was analyzed with ELISA. (B) Summary of cytokine secretion in from four healthy individuals.

The ratio of the frequencies of IFN-γ+ CD8+ T cells to IFN-γ+TNF-

The ratio of the frequencies of IFN-γ+ CD8+ T cells to IFN-γ+TNF-α+ CD8+ T cells was significantly higher after JEV SA14-14-2 immunization compared with WNV infection for JEV S9 and WNV S9 (p<0.05, Mann–Whitney U test) (Fig. 2D). No significant difference in this ratio was detected between the JEV S9 and WNV S9 variants in either JEV SA14-14-2 immunized or WNV-infected mice. Of note, IFN-γ+TNF-α+ CD8+ T cells from WNV-infected mice produced more TNF-α on a per cell basis than those from JEV SA14-14-2 immunized mice, while levels of IFN-γ from this population were similar for JEV

and WNV (Supporting Information Fig. 2). Since JEV SA14-14-2 is an attenuated virus, we used a pathogenic JEV (Beijing strain) to determine if DAPT manufacturer differences in cytokine profiles between JEV and WNV Erastin nmr could be explained on the basis of the pathogenicity of the infecting virus. We infected mice with a low dose (103 pfu – comparable dose to WNV) or high dose (106 pfu – comparable dose to JEV SA14-14-2) of JEV Beijing. Similar to JEV SA14-14-2, infection with either low- or high-dose JEV Beijing induced a significantly higher frequency of IFN-γ+ CD8+ T cells than IFN-γ+TNF-α+ CD8+ T cells compared to WNV infection (p<0.05, Mann–Whitney U test) (Fig. 2B and C). These findings

indicate that the infecting virus (JEV versus WNV) determined the altered cytokine profile. To ascertain whether the differences in the cytokine profiles are related to different

CD8+ T-cell kinetics, we measured epitope-specific dimer+ CD8+ T cells 5, 7 and 10 days post-infection. Rapid expansion of CD44hidimer+ CD8+ T cells occurred between days 5 and 7 with peak levels occurring at day 7 for all infections with the exception of high-dose JEV Beijing, which peaked at or before day 5 post-infection (Fig. 3 and Supporting Information Fig. 3A). For JEV SA14-14-2 and low-dose JEV Beijing, an approximately four- to eight-fold contraction in frequency and absolute cell number (data not shown) of JEV S9 dimer+ CD8+ T cells occurred between days 7 and 10 while only a one- to two-fold contraction in frequency and absolute cell number (data not shown) of WNV www.selleck.co.jp/products/BAY-73-4506.html S9 dimer+ CD8+ T cells occurred in WNV-infected mice. Similar to the pattern seen for cytokine production, infection with JEV induced a higher proportion of cross-reactive WNV S9 CD8+ T cells than cross-reactive JEV S9 CD8+ T cells seen in WNV infection. Although the peak CD8+ T-cell response for high-dose JEV Beijing occurred earlier, there was no difference in the frequency of IFN-γ+ and IFN-γ+TNF-α+ CD8+ T cells at day 7 for all JEV infections. These results suggest that the kinetics of epitope-specific cells are not related to the altered cytokine profiles seen. Effector CD8+ T-cell activation depends on many factors, including antigen stimulation and inflammatory conditions 20.

This, however, is in contrast with previous studies, which report

This, however, is in contrast with previous studies, which reported that eosinophils mainly secrete Th2-type cytokines in response to parasite antigens and allergens.33,34 The GM-CSF is a cytokine expressed by a variety of cells, including activated T cells, Mφ, fibroblasts and epithelial cells. GM-CSF

is required for the recognition of pathogens, the timely development and proper compartmentalization of the immune response and the control of pulmonary growth of C. neoformans.35 Furthermore, GM-CSF stimulates the functional activity of eosinophils and maintains the maximum viability of cells,13 and GM-CSF-activated selleck chemical eosinophils have been reported to be capable of acting as specific APCs to a T-cell BAY 73-4506 mw clone derived from mice infected with Mesocestoides corti.27 The results of the present study showed that

GM-CSF only modified the MHC class II expression levels on eosinophil surfaces cultured with C. neoformans. Moreover, C. neoformans-pulsed eosinophils in the presence of GM-CSF expressed threefold more MHC class II than C. neoformans-pulsed eosinophils in the absence of this stimulating factor (Fig. 2b). In contrast, GM-CSF did not modify phagocytosis of the fungus, the expression of MHC class I, CD80 or CD86, cytokine production or the fungicidal molecules released by eosinophils incubated with the fungus. Related to this, Feldmesser et al.19 have demonstrated that short-term incubation with IL-5, GM-CSF and lipopolysaccharide (LPS) did not appear to enhance eosinophil phagocytosis. Phagocyte–microbe contact is accompanied by intracellular signals that trigger cellular processes as diverse as cytoskeletal rearrangement, alterations in membrane trafficking, activation of microbial killing mechanisms, production of pro- and anti-inflammatory cytokines and chemokines, activation of apoptosis and the production of molecules required for efficient antigen presentation to the adaptive immune system.36,37 In this regard, it has been shown that eosinophils are able to produce H2O2 in response to phagocytosis

of heat-killed Staphylococcus aureus38 and excretory–secretory products (ESP) from interacting with Fasciola hepatica.8 In addition, Phipps et al.39 suggests that eosinophil-derived NO contributes to innate protection against the respiratory syncytial virus. In fact, in cryptococosis, the generation of NO is required 4��8C for resistance to primary fungal infections. Moreover, mice deficient in inducible nitric oxide synthase (iNOS) did not survive a primary infection.40 Snelgrove et al.41 have shown that NADPH oxidase-deficient mice elicited a heightened Mφ-driven Th1 response with the containment of cryptococci within pulmonary granulomatous lesions. They also observed improved clearance of pathogen in lung and airways, with reduced dissemination to the brain. In the present study, opsonized C. neoformans down-regulated NO and H2O2 synthesis by eosinophils in an FcγRII-dependent manner.